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Overview

• Discuss the theory of  differential electrical mobility 
analysis (DMA) for classifying and sizing spherical 
nanoparticles as an aerosol.

• Present a model for measuring the length distribution
of nanowires using a DMA and compare with 
measurements for multiwalled carbon nanotubes

 (MWCNT).

• Discuss the theory and application of the Aerosol  
Particle Mass Analyzer to characterization of MWCNT.



Electrical Mobility

Equation of motion for singly charged particle:
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Particle Trajectory through DMA based on Plug Flow
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Limiting Trajectories through the DMA
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DMA Transfer Function

Ω

 

= probability of particle entering the DMA with mobility Zp
will leave via the sampling flow.
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Generalization:  the above form of the transfer function is independent 
of the detailed structure of the flow field provided the flow is

 

laminar. 

Knutson and Whitby, J. Aerosol Sci., 1975.
Hagwood et al., Aer. Sci. Tech., 1999.



Applications of the Transfer Function

Size distribution passing
through DMA
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Measurement System
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Generation of Carbon Nanotubes
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Kim and Zachariah, 
Nanotechnology, 2005. 



Angle Dependence of Electrical Mobility of Nanowire
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Dahneke’s expression for the friction coefficient for a cylindrical
particle with hemispherical ends in free molecular regime: 

For a nanowire oriented by the electric field we have

We first consider the limiting cases of a totally aligned nanowire and a 
randomly oriented nanowire.
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Angle Dependence of Electrical Mobility of Nanowire
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Dahneke’s expression for the friction coefficient for a rotating cylindrical
particle with hemispherical ends in free molecular regime: 

For a nanowire oriented by the electric field we have

We first consider the limiting cases of a totally aligned nanowire and a 
randomly oriented nanowire.
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Relation between L
 

and Dm

 

for Nanowire 
Aligned by the Electric Field

Mobility of oriented cylinder

The mobility diameter, Dm

 

, is the diameter of a sphere with the same
mobility as the cylinder.
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Relation between L
 

and Dm

 

for Nanowire 
Randomly Oriented
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Assume conduction time fast compared
to 1μs for β=5 and df

 

=15 nm.
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Randomly Oriented Cylinder

( ) θθθθ dsincdP =

Probability distribution for randomly oriented 
cylinder:

Orientation averaged mobility Case 1:

Equating Zsphere to Zcylinder

 

, one finds an implicit relationship between
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(or Lf
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Aligned with Electric Field

( )mf

m
f DCfd

DL λ6
=

Randomly oriented

( )mf

m
f DCd

D
L

κλ6
=

Also we find:

For f

 

= 0.9, we find:

randomaligned L
f

L
κ
1

=

randomaligned L.L 881=

Explicit Relation between L and Dm in Limit of Large β

( )[ ]
3

33

2

2

k

k/kfln +
=κ 4

623
π−

−= fk



Aligned with Electric Field

( )mf

m
f DCfd

DL λ6
=

Randomly oriented

( )mf

m
f DCd

D
L

κλ6
=

Also we find:

For f

 

= 0.9, we find:

randomaligned L
f

L
κ
1

=

randomaligned L.L 881=

Explicit Relation between L and Dm in Limit of Large β

4
623

π−
−= fk( ) ( )[ ]

( )32
11
kfa
a/aln

+
−+

=κ
21

3

3
/

kf
k

a ⎥
⎦

⎤
⎢
⎣

⎡
+

=

randomaligned L.L 059=For f

 

= 0.1, we find:

Might this apply to single walled nonotubes?
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Comparison of Predicted Nanowire Length as a 
Function of Mobility Diameter for df = 15 nm
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Orientation Probability of Charged Nanowire
 in Electric Field

The probability of alignment at polar angle θ, P(θ)dθ

 

is given
by Boltzmann’s law:

Φ(θ) is the change in the potential energy as the nanowire rotates by

 

θ.
There are two contributions to the potential energy:
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Polarizability Potential for a Prolate Spheroid
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= permittivity in free space
εk

 

= dielectric constant of nanowire
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= volume of prolate
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Combined Potential Energy for Conducting Nanowire
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and L (or β) as shown below 
for 15 nm diameter nanowire:
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Tendency of Nanowires to Align in the Electric Field
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Orientation Probability

The orientation probability:
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It is convenient to express the integral in terms of 

After completing the square, the normalization constant c is
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Orientation Probability Dependence on β
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Orientation Averaged Mobility
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The average mobility is a function of the electric field and aspect ratio for 
a fixed diameter of the cylinder. 
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Estimated Rotation Time for Nanowire
Brownian rotation equation:

where  Rd

 

=  the rotational friction coefficient.
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rotating nanowire.
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⋅
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Transit Time through a Differential Mobility Analyzer

High Voltage 
Power Supply

FE FDθ

Nanowire- 
laden Flow

Condensation 
Particle 
Counter

E

rin

rout

Lf

Ld

df

Sheath Flow

Excess Flow

ra

rb

Inlet Slit

Outlet Slit

tp

 

= time for the nanowire to travel 
from inlet slit to outlet slit. 
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Transfer function = 1 for these tra-
jectories; Hagwood, Sivithanu, 
Mulholland, AST, 1999.



Transit Time through a Differential Mobility Analyzer
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Use the relations:

and

To express the integral 
in terms of

 

E

 

and      .
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Connection between Predictions 
and DMA Measurements

∫=
b

out

E

E pinout

e
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dE
)r/rln(

Vt
β3

Nanowires

 

are selected by the DMA at several voltages and analyzed by TEM.
For these fixed voltages and for a fixed nanowire diameter of 15

 

nm, the value
of the aspect ratio β

 

(length L)

 

is adjusted until: 

total

dinout
F Q

L)rr(
t

22 −
=
π

Particle trajectory times, tp,o

 

=  fluid transit time, tf



Comparison of Predicted and Measured Nanotube Length

tp

 

, s Ve

 

, V Dm

 

, nm L, TEM
nm

L, theory
nm

2.26 470 50 121 135
2.26 1089 80 378 405
2.26 1607 100 622 915
2.26 2199 120 926 1320
2.26 3169 150 1460 1935
2.26 4962 200 2674 3060



Comparison Experimental and Theoretical Nanotube
Length as a Function of Mobility Diameter
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TEM Micrographs of Carbon Nanotubes
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Aerosol Particle Mass Analyzer (APM)

centrifugal force outward
electrostatic force inward

particles with specific
m/q ratio pass through

ω

V



Particle Trajectory in APM
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Particle Trajectory in APM
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Particle Trajectory in APM
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Transfer Function for Uniform Flow
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Ehara, Hagwood, and Coalkey, J. of Aerosol Sci., 1996 



Results for DOP and NaCl

Monodisperse DOP and NaCl aerosols are selected with a DMA 
and then the mass classification was obtained using the APM.

Material Mobility Diameter,
nm

ρ, g/cm3

DOP 50 1.07
100 1.01
200 1.01

NaCl 50 2.29
100 2.10
150 2.09

( )DOPρ = 1.03 g/cm3 vs 0.986 g/cm3   

( )NaClρ = 2.16 g/cm3 vs 2.165 g/cm3
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Procedure for Computing the Density

1.

 

Compute mass of CNT
a.

 

Measure the mass of combined CNT and Ni particle.
b.

 

Use the density of Ni, 8.9 g/cm3, and diameter of seed
particle to compute its mass.

c.

 

The difference of these two masses is the CNT mass.

2.

 

Compute volume of CNT
a.

 

Measure the CNT diameter by TEM (15 nm or 22 nm).
b.

 

Determine the projected area of the CNT from the
correlation between the projected area diameter 
and the mobility diameter.

3.  Compute density
( ) pCNTCNT

CNT
CNT AD/

m
π

ρ
41

=



TEM Micrographs of Carbon Nanotubes
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Comparison of Projected Area Diameter of Nanotubes 
(from TEM) with Electrical Mobility Diameter
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Density of MWCNTs for 2 Diameters and 3 Lengths Each

DCNT,

 

nm Dm, nm ρCNT,

 

g/cm3

15 70 1.74 

100 1.73 

130 1.63 
22 70 1.69 

100 1.67 

130 1.75 

Mean density ±

 

uncert. = 1.70 g/cm3

 

±

 

0.15 g/cm3

Graphite density =2.22 g/cm3

Carbon black density = (1.84 –

 

2.06) g/cm3

I have not been able to find data or predicted densities for MWCNTs



Simultaneous Measurement of L
 

and df

Heuristic Example

APM:

DMA:

2
fLdm =

fp LdA =

From these two expressions, we can estimate L

 

and df:

p
f A

md =
M
A

L p
2

=

Could these two measurements be useful for monitoring the production 
of nanowires?
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